

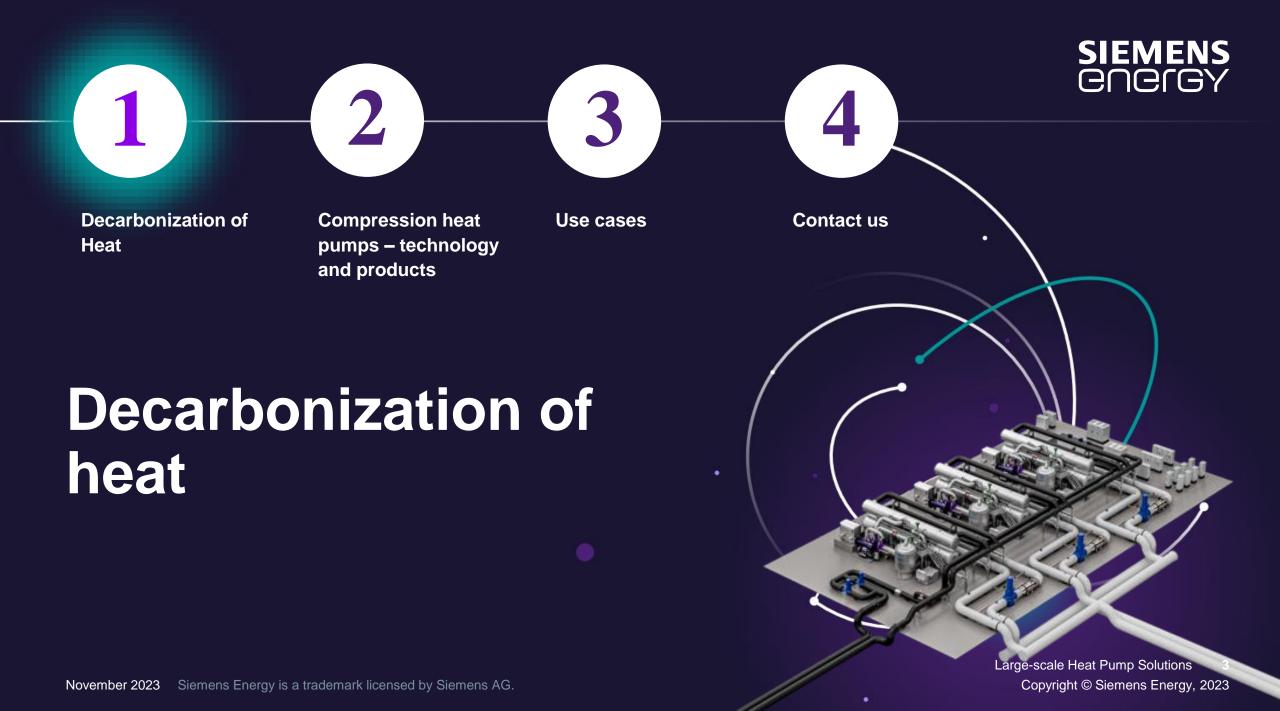
Making the most of waste heat with high-temperature industrial heat pumps

Presenter: Wim Van Den Mosselaer Authors: Dr. Christian Hüttl, Norbert Wenn, Jürgen Voss, Dr. Florian Reissner

Siemens Energy, 2023

November 2023 Siemens Energy is a trademark licensed by Siemens AG.

Large-scale Heat Pump Solutions 1 Copyright © Siemens Energy, 2023 Agenda



1234Decarbonization ofCompression heatUse casesContact us

pumps – technology

and products

heat

Decarbonization of heating sector is essential to meeting global emissions targets **and requires usage of Renewable Electricity**

~50%

of global final energy consumption is heat¹

76%

from non-renewable sources¹

40+%

of global energy related carbon emissions¹

e.g. IEA analysis¹

Use of Renewable Electricity in Heating Sector is key!

¹IEA (2021), Renewables 2021, IEA, Paris https://www.iea.org/reports/renewables-2021

Large-scale Heat Pump Solutions 4 Copyright © Siemens Energy, 2023

Compression heat pumps – SE technology and products

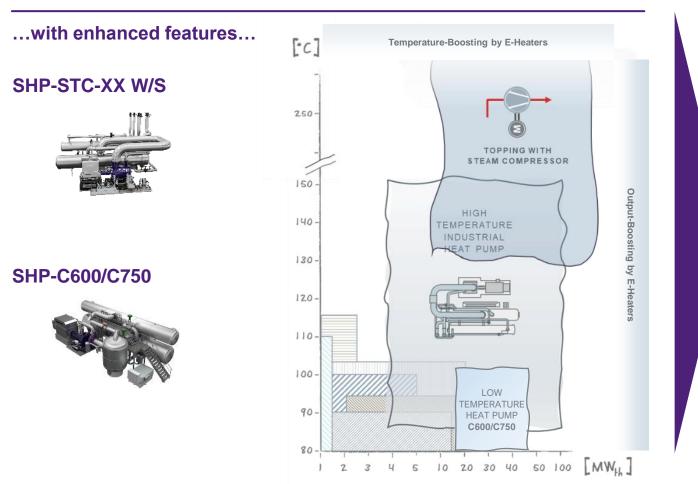
and products

Large-scale Heat Pump Solutions 5 Copyright © Siemens Energy, 2023

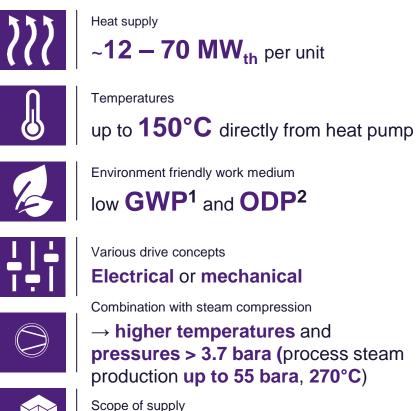
Basic principle of compression heat pumps Performance and perspective for decarbonized heat production

HEAT PUMP PROCESS SCHEME DECARBONIZED HEAT PRODUCTION **Heat Sink Q**_{out} vapour (super-heated) liquid (sub-cooled) **Q**_{out} Q_{out} Condenser H₂-Boiler Compressor Motor Expansion valve IN Heat pump E-Heater H2 Thermal Energy (Q_{OUT}) Electrolyzer COP = -Evaporator Electrical Energy (P_{IN}) \mathbf{P}_{in} **P**_{in} **Q**_{in} ⊂ P_{in} ∟ 2-Phase vapour (super-heated) Heat source Electricity Electricity Electricity **Heat Source** COP_{HP} = 2...6 $COP_{RH} < 1$ COP_{areen H2} < 0.75 WORKING PRINCIPLE

Heat flows naturally from a higher to a lower temperature. Heat pumps, however, are able to force the heat flow in the other direction, using a relatively small amount of high quality drive energy, e.g. electricity. Thus heat pumps can transfer heat from a low temperature to a high temperature level¹.


Heat pumps offer the most efficient way to Decarbonize heat !

Large-scale Heat Pump Solutions 6 Copyright © Siemens Energy, 2023


Industrial scale heat pumps from Siemens Energy Address both district heating and industry applications

Two complementary product lines ...

... to serve the needs of our customers

Component up to turnkey supply


¹ GWP = Global Warming Potential ² ODP = Ozone Depletion Potential

> Large-scale Heat Pump Solutions **7** Copyright © Siemens Energy, 2023

Industrial scale heat pumps from Siemens Energy Address both district heating and industry applications

Two complementary product lines ...

Heat supply ~12 – 70 MW_{th} per unit Temperatures up to 150°C directly from heat pump

... to serve the needs of our customers

Environment friendly work medium low **GWP¹** and **ODP²**

Various drive concepts
Electrical or mechanical

Combination with steam compression

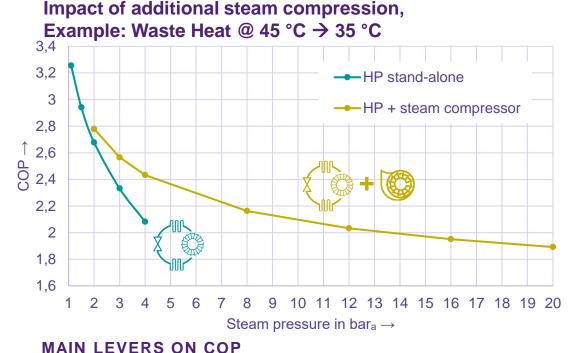
→ higher temperatures and pressures > 3.7 bara (process steam production up to 55 bara, 270°C)

Scope of supply

Component up to turnkey supply

¹ GWP = Global Warming Potential ² ODP = Ozone Depletion Potential

> Large-scale Heat Pump Solutions 8 Copyright © Siemens Energy, 2023


Industrial Heat Pumps @ Industry Use Cases @ refinery and chemical industry

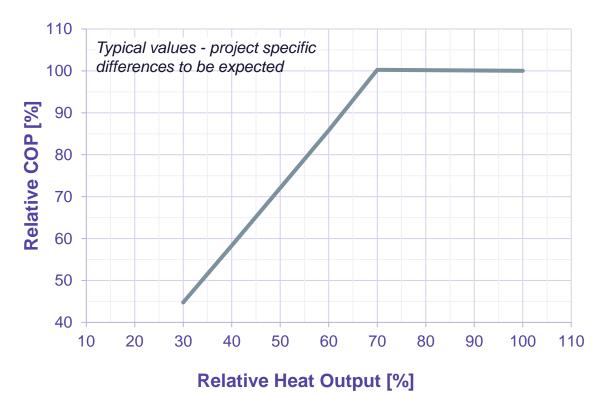
Example: Steam from Waste Heat

• High temperature heat pump utilizes waste heat from process water to produce

HEAT PUMP + STEAM COMPRESSION FOR STEAM GENERATION

• Saturated steam is fed to steam compressor (multi-stage intercooled)

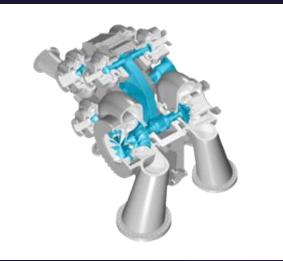
saturated steam from feedwater


Final adjustment of steam parameters by attemperation

- Required steam pressure: the higher the steam pressure the lower the COP → Every 0.5 bar counts
- Temperature level of waste heat: the lower the temperature level of the waste heat the lower the COP

Large-scale Heat Pump Solutions 9 Copyright © Siemens Energy, 2023

High temperature heat pumps – technical features Part load behavior


Relative COP vs. Relative Heat Output

Large-scale Heat Pump Solutions **10** Copyright © Siemens Energy, 2023

HTHP Main Component Turbocompressor

Applications

Air separation CCS CAES Refineries Ammonia Synthetic fibers Petrochemicals Metallurgy

Max. volume flow:

Max. discharge pressure: Max. power requirement: Drive options:

Reference situation:

1,000,000 m³/h 590,000 cfm 200 barg / 2,900 psig 60 MW / 80,000 hp E-drive, steam turbine or gas turbine More than 2,500 units

Technical

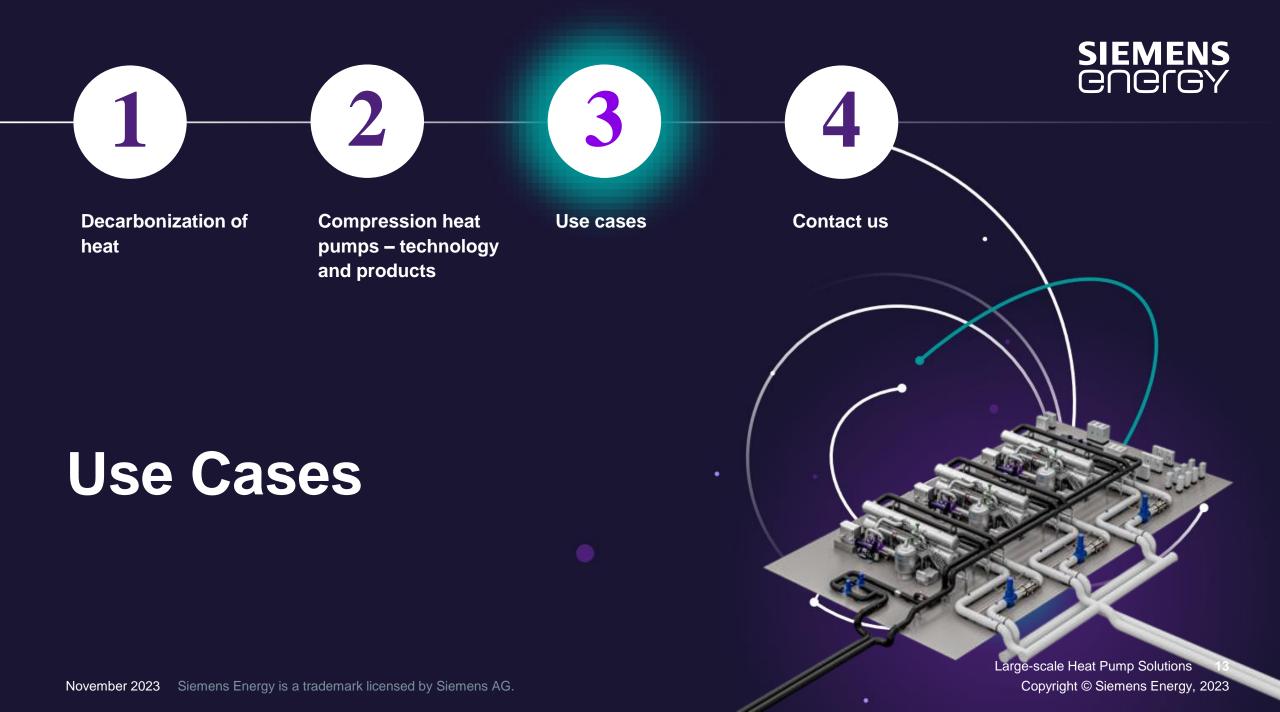
Data

Benefits

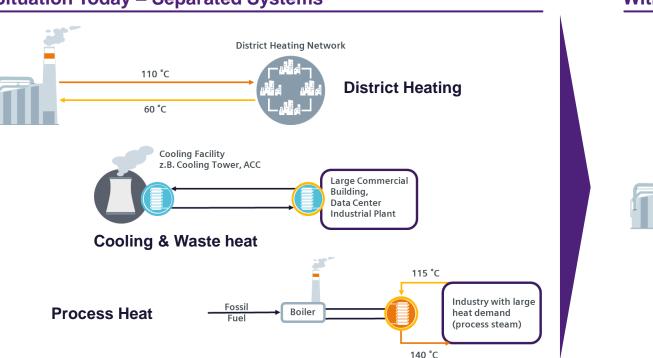
- Increased production and reduced energy costs highest efficiency and widest operating range in the industry
- Maximum reliability due to flexible design concepts combining custom-tailored design with standardized components
- Exceptional technical expertise with proven technology and extensive experience since 1948
- Ensuring fast support and the highest quality of service by being the sole supplier for a complete solution including proprietary gear technology

Product Description

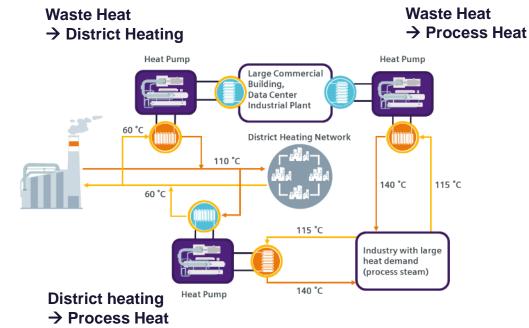
- Solutions with high efficiencies and pressures up to 200 bar (1,900 psi)
- Designed according to customer specifications and to API 617 and API 672
- Highest quality and technical standards for a broad range of industrial applications
- Powerful and robust design, with integrated expander option


Large-scale Heat Pump Solutions 11 Copyright © Siemens Energy, 2023

HTHP Main Component STC-GV

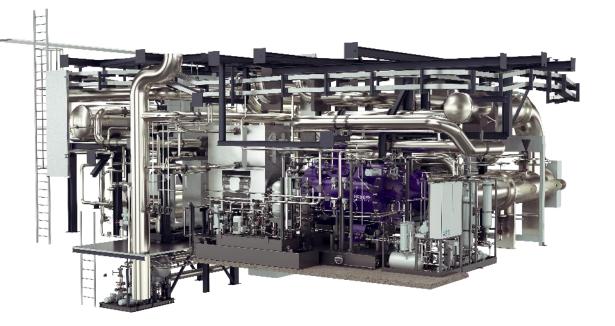


Large-scale Heat Pump Solutions 12 Copyright © Siemens Energy, 2023


Industrial heat pumps @ district heating & industry **Principle Use Cases**

Situation Today – Separated Systems

With Heat pump – Integrated Heat approach


Benefits

- Waste heat from large commercial buildings, data centers and industry can be utilized for district heating or process heat
- · Utilize district heating systems as heat source for process heat
- Combined-Heat-and-Power-and-Cooling → re-use of waste heat → reduced heat rejection to ambience
- no additional cooling facilities needed anymore \rightarrow e.g. reduction of aux. consumption, make-up water
- "cooling" as additional product for heat pumps

Industrial High Temperatur Heat Pumps

New Project | QWARK3 | Berlin Potsdamer Platz

Joint Press Release

SIEMENS COCICY VATTENFALL

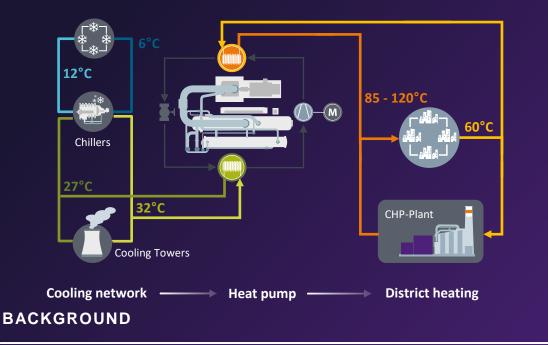
Berlin, March 25, 2021

Press release by Vattenfall Warme Berlin AG and Siemens Energy Vattenfall and Siemens Energy help advance a climate-friendly heating supply for Berlin with large-scale heat pump

- Joint trial of a large-scale, high-temperature heat pump in district heating network
- Waste heat and renewable electricity utilized to achieve heating transition in Berlin
- Federal government-funded project links heat, cooling, and electricity

8 MW_{th} DH supply temperature (fexible) 85 °C bis 120°C

Heat Output


DH heat production ~ 55 GWh/a

CO₂ savings ~ 6500 t/a Savings on cooling water ~ 120 000 m³/a

> Large-scale Heat Pump Solutions 15 Copyright © Siemens Energy, 2023

Siemens Energy - Industrial Heat Pumps QWARK3 | Berlin Potsdamer Platz

QWARK3 – Quartiers-Wärme-Kraft-Kälte-Kopplung

- Heat pump lifts heat from the temperature level of cooling water of chillers to the temperature level of district heating system of Berlin
- Publicly funded project (BMWK and PtJ) in cooperation with Vattenfall Wärme Berlin
- Execution ongoing

SIEMENS COCIGY

KEY FIGURES

8 MWth		
~ 3.0		
Hydro-(-chloro)-fluoro-olefin (H(C)FO)		
Brownfield (integration in existing building)		
Cooling Water Return from Chillers (32 \rightarrow 27 °C)		
District Heating (50 °C \rightarrow 85 - 120 °C)		
single shaft centrifugal vertically split radial compressor		
Separated lube and Seal Oil System		
Semi-welded plate type heat exchangers (Evaporator, Condenser, Subcooler)		
T3000 compact		

Large-scale Heat Pump Solutions **16** Copyright © Siemens Energy, 2023

Grosskraftwerk Mannheim (GKM) MVV/GKM River Water Heat Pump

REFERENCE MVV & GKM MANNHEIM, GERMANY

Siemens Energy and MVV with GKM using a large-scale heat pump to do the first step towards green district heating

Heat pumps

CO₂-savings

Efficiency

SIEMENS COCIGY

Customer Challenge/Driver

Decrease the use of coal at GKM power plant by installation of a heat pump using the river as energy source. The new heat pump is the first step towards the goal of green district heating. MVV and the City of Mannheim is targeting to become CO_2 neutral in the district heating production by 2030.

Portfolio Elements

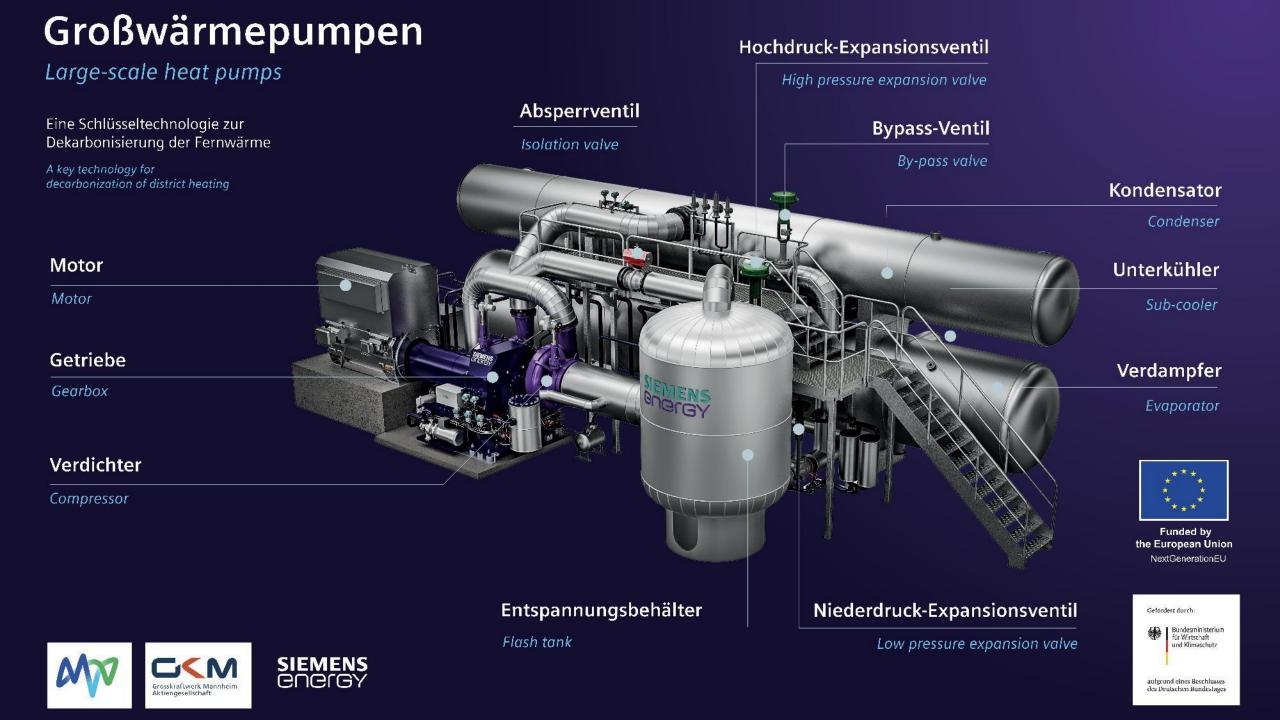
Low temperature heat pump SHP-C600 from Finspång (20 MW_{th}) enabling temperature levels up to 99 °C, compressor with gear, electrical motor, heat exchangers, storage tank & control system

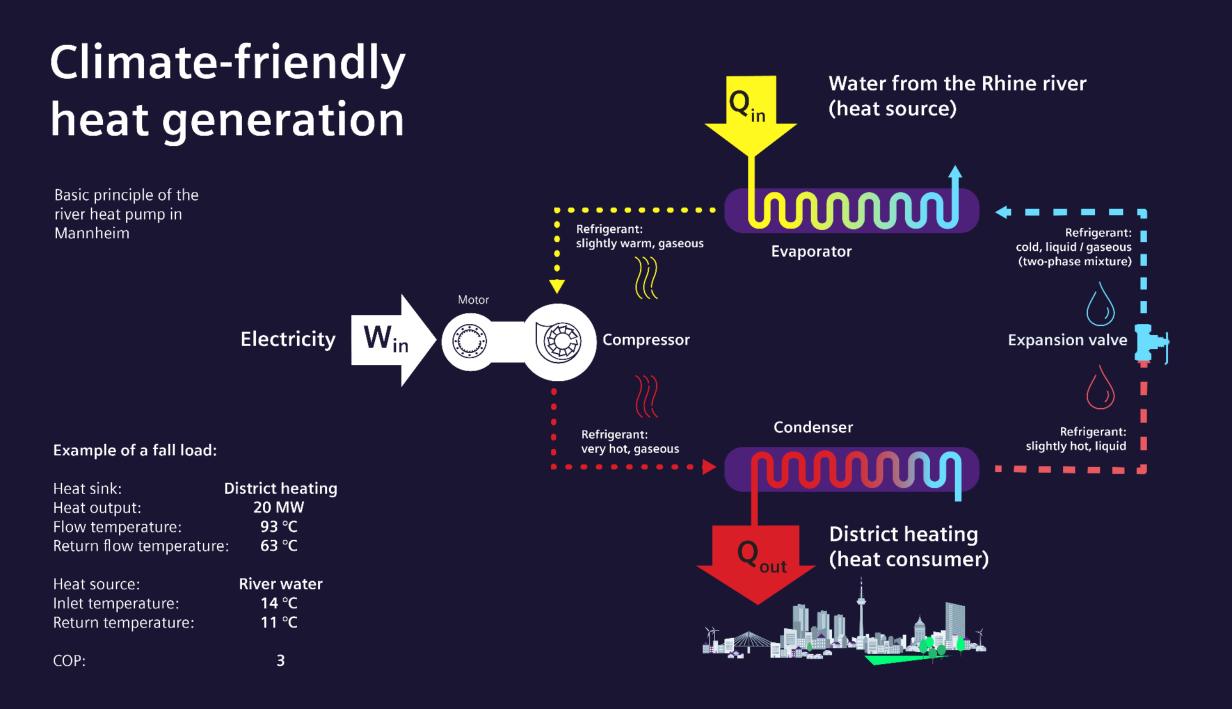
Scope

Delivery of a complete heat pump SHP-C600 including full installation and commissioning

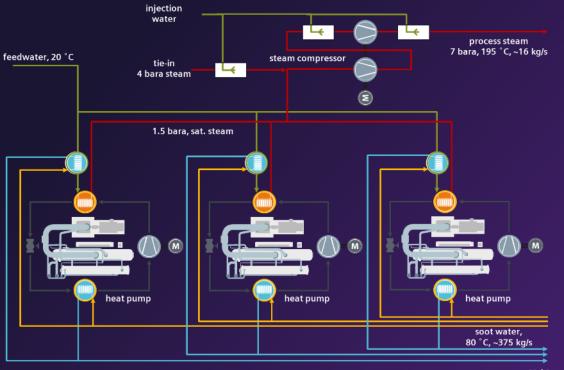
Customer Benefit

- Decrease the use of coal
- Use the river Rhine as heat source
- Provide 50 GWh/a heat for the district heating network
- More than 10,000 t of CO₂ emissions savings per year versus heat from a gas boiler at 2,500 full operating hours




 \checkmark

Large-scale Heat Pump Solutions 18 Copyright © Siemens Energy, 2023


November 2023 Siemens Energy is a trademark licensed by Siemens AG.

ombined hea

Siemens Energy – Industrial heat pumps **Steam Production | Chemical Plant**

soot water return, 61 °C

Background

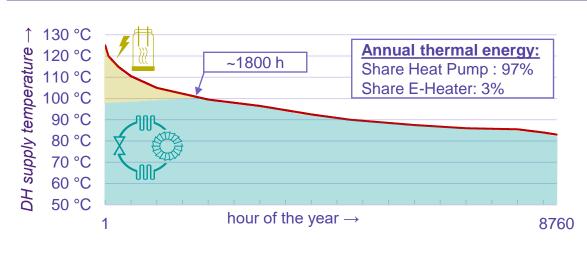
- · High temperature heat pump utilizes waste heat from process water of reactors to produce saturated steam from feedwater
- · Saturated steam is fed to steam compressor (multi-stage intercooled / attemperated)
- Final adjustment of steam parameters by attemperation

SIEMENS energy

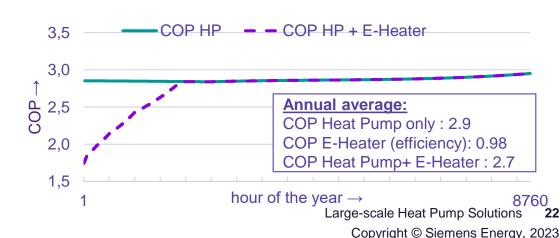
Key Figures

Capacity	44 MWth HP & Steam Compressor		
Average COP	~ 2.8 (incl. steam compression)		
Refrigerant	Hydro-(-chloro)-fluoro-olefin (H(C)FO)		
Arrangement	Brownfield (integration in existing building)		
Heat source	Process water return from reactors (80 \rightarrow 61 °C)		
Heat sink	Process Steam (20 °C \rightarrow 7 bara, 195 °C)		
Compressor	SIEMENS geared type radial compressor		
Lube & Seal Oil System	Seperated lube and Seal Oil System		
Heat Exchanger	Shell & Tube Heat Exchangers (Evaporator, Condenser, Subcooler, Pre-Heater)		
I&C System	T3000 compact		

District Heating Supply with Low Temperature Heat Pump Combination of Heat Pump + Electric Heater



t_{return}= 50°C τ_{supply} = 125 °C t_{HP out} = 98 °C **{**}} from district E-Heater to district heating heating Heat Pump network network Pel. E-Heater P_{el, HP} Electricity t_{return}= 5 °C t_{river} = 7 °C from river to river **BENEFITS**


TEMPERATURE TOPPING WITH E-HEATER

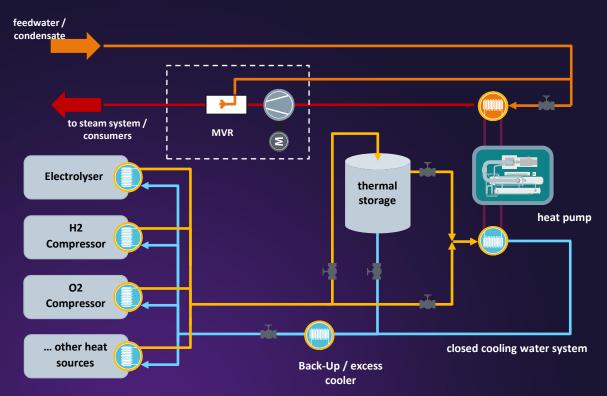
- Higher DH supply temperatures can be obtained with E-Heater
- Optimum cost-benefit ratio due to appropriate sizing of CAPEX intensive but high efficient equipment
- Optimum operation scheme of heat pump, high full load hours

EXEMPLARY CASE WITH GLIDING DH SUPPLY TEMPERATURE

EFFECT ON OVERALL EFFICIENCY

Siemens Energy – Industrial Heat Pumps Concept | Waste Heat Utilization from Electrolysers for Steam Production

Principle:


- Heat Pump absorbs the heat from the H2 production and lifts it to higher temperature level e.g. for process heating (steam)
- Heat Pump produces low pressure steam (up to 3.7 bara)
- Steam compressor with attemporation is used to produce demanded steam parameters

Challenges:

- Heat demand and waste heat from H₂ production may timewise not be congruent
- Fluctuating heat from H₂ production (esp. when driven be renewable electricity)

Concept:

- Optimized design and sizing of heat pump system by integrative measures e.g.:
 - integrating a thermal waste heat storage for electrolyzer
 - integrating a back-up / excess cooler to account for ageing of electrolyzer etc.

EXEMPLARY PROCESS DATA

Heat Source:

- approx. 8.5 MWth from H2 production (1 x electrolyzer only)
- required cooling from 48 °C \rightarrow 35 °C

Heat Sink:

- approx. 15.1 MW_{th} process steam @ 8 bara, 190 $^{\circ}\text{C}$

Heat Pump:

- COP ~ 2.1 (overall) \rightarrow ~ 6.9 MW electrical power demand
- Footprint ~ 20m x 15m (heat pump) + 15m x 10m (steam compressor)
- combination of several H2 production lines onto one heat pump possible

Large-scale Heat Pump Solutions 23 Copyright © Siemens Energy, 2023

November 2023 Siemens Energy is a trademark licensed by Siemens AG.

SIEMENS COCIGY

Electrolyzer

- 335 kg/h¹⁾ hydrogen production
- Proven Silyzer technology

Omnivise Hybrid Control

- Easy-made control of complex energy systems
- Enhanced plant reliability
 - by collecting data in real time

High Temperature Heat Pump

- Temperature increase
 - up to 150°C
- COP ²⁾ of 3.5
- 8 MW_{th}

Heat storage

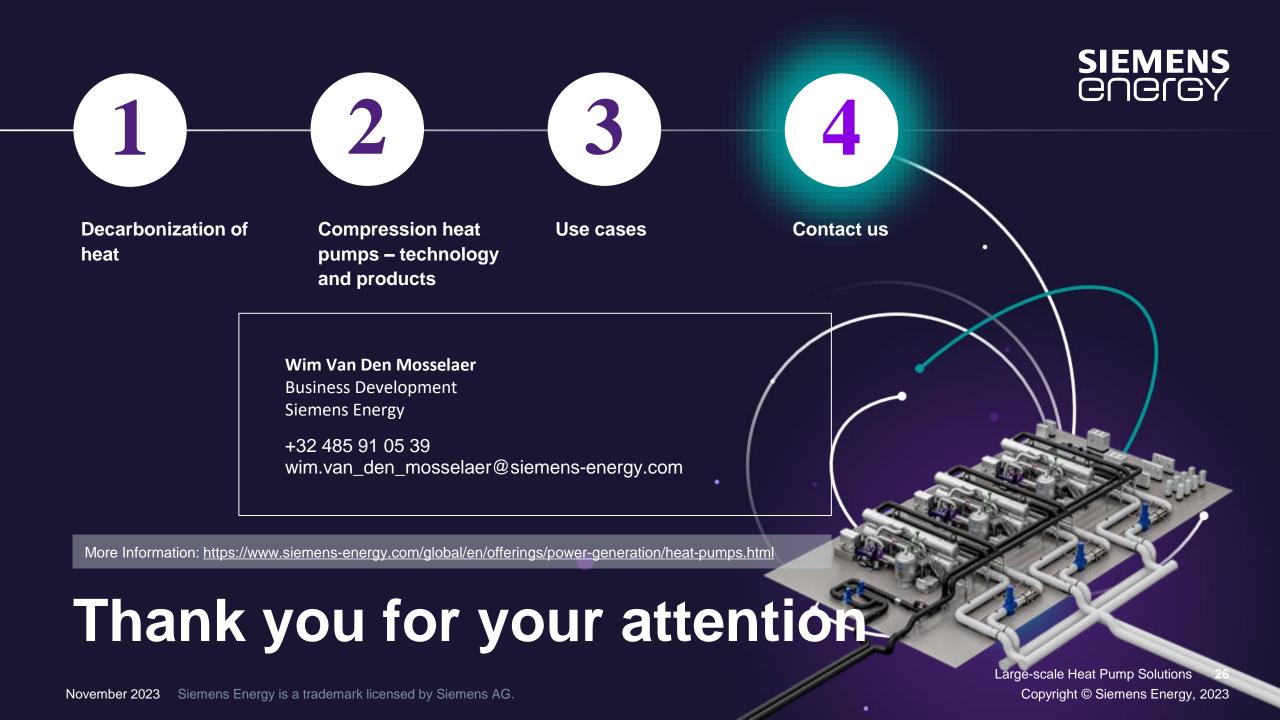
- Balancing heat loads
- during lifecycle
- Separation of heat
- production and heat demand

H₂ Gamechanger Combination of Electrolyzer and Heat Pump efficiently utilizes your waste heat

- 1) Per full module array (24 modules)
- 2) Coefficient of performance for temp. increase from 60°C to 110°C

Increase your energy utilization **to ≥96%**

Industrial heat pumps References | since 1980


Since 1980

50 Large-scale Heat Pumps from Siemens Energy (35 still in operation)

Nr.	Project	Heat Output	Nr.	Project	Heat Output
1	Ludvika 1	11 MWth	26	Lund GEO	20 MWth
2	Västeras 1	12 MWth	27	KungsängenVP1	8 MWth
3	Uppsala 1	13 MWth	28	Örebrö VP1	20 MWth
4	Uppsala 2	13 MWth	29	Örebrö VP2	21 MWth
5	Uppsala 3	13 MWth	30	Huskvarna	7 MWth
6	Visby	12 MWth	31	Hammarby VP1	20 MWth
7	Borlänge 1	12 MWth	32	Hammarby VP2	20 MWth
8	Borlänge 2	12 MWth	33	Hammarby VP6	30 MWth
9	Västeras 1	12 MWth	34	Hammarby VP7	30 MWth
10	Lund1	13 MWth	35	Akersberga VP1	6 MWth
11	Malmö1	13 MWth	36	Järfälla VP1	20 MWth
12	Malmö2	13 MWth	37	Järfälla VP2	20 MWth
13	Malmö3	13 MWth	38	Solna VP1	30 MWth
14	Eskilstuna 1	13 MWth	39	Solna VP2	30 MWth
15	Upplands Väsby 1	11 MWth	40	Solna VP3	30 MWth
16	Upplands Väsby 2	11 MWth	41	Solna VP4	30 MWth
17	Sandviken	12 MWth	42	Lund Geo 2	27 MWth
18	Gävle 1	14 MWth	43	Ropsten VP91	25 MWth
19	Eskilstuna 2	13 MWth	44	Ropsten VP92	25 MWth
20	Borlänge 3	12 MWth	45	Ropsten VP93	25 MWth
21	Kalmar VP1	13 MWth	46	Ropsten VP94	25 MWth
22	Örnsköldsvik VP1	14 MWth	47	Lindesberg VP1	5 MWth
23	Örnsköldsvik VP2	5 MWth	48	Eslöv VP1	9 MWth
24	Umea VP1	17 MWth	49	Jönköping	25 MWth
25	Umea VP2	17 MWth	50	Hammarby VP 5	30 MWth

Large-scale Heat Pump Solutions 25 Copyright © Siemens Energy, 2023

